Stochastic integrals in the plane
نویسندگان
چکیده
منابع مشابه
Differentia Ion Formulas for Stochastic Integrals in the Plane*
For a one-parameter process of the form X, = X0 + & (b, d W, + & & ds, where W is a Wiener process and I+ d W is a stochastic integral, a twice continuously differentiable function f(X,) is again expressible as the sum of a stochastic integral and an ordinary integral via the Ito differentiation formula. In this paper we present a generalization for the stochastic integrals associated with a tw...
متن کاملPath Integrals for Stochastic Neurodynamics Path Integrals for Stochastic Neurodynamics
We present here a method for the study of stochastic neurodynamics in the framework of the "Neural Network Master Equation" proposed by Cowan. We consider a model neural network composed of two{state neurons subject to simple stochastic kinetics. We introduce a method based on a spin choerent state path integral to compute the moment generating function of such a network. A formal construction ...
متن کاملConditionally Gaussian stochastic integrals
We derive conditional Gaussian type identities of the form E [ exp ( i ∫ T 0 utdBt ) ∣∣∣∣ ∫ T 0 |ut|dt ] = exp ( − 2 ∫ T 0 |ut|dt ) , for Brownian stochastic integrals, under conditions on the process (ut)t∈[0,T ] specified using the Malliavin calculus. This applies in particular to the quadratic Brownian integral ∫ t 0 ABsdBs under the matrix condition A †A2 = 0, using a characterization of Yo...
متن کاملThe using of Haar wavelets for the expansion of fractional stochastic integrals
Abstract: In this paper, an efficient method based on Haar wavelets is proposed for solving fractional stochastic integrals with Hurst parameter. Properties of Haar wavelets are described. Also, the error analysis of the proposed method is investigated. Some numerical examples are provided to illustrate the computational efficiency and accuracy of the method.
متن کاملDetermining Liouvillian first integrals for dynamical systems in the plane
Here we present/implement an algorithm to find Liouvillian first integrals of dynamical systems in the plane. In [1], we have introduced the basis for the present implementation. The particular form of such systems allows reducing it to a single rational first order ordinary differential equation (rational first order ODE). We present a set of software routines in Maple 10 for solving rational ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Mathematica
سال: 1975
ISSN: 0001-5962
DOI: 10.1007/bf02392100